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Estimation of the Agricultural Probability of Loss: 
evidence for soybean in Paraná State

Vitor Augusto Ozaki1, Ricardo Olinda2,  
Priscila Neves Faria3 and Rogério Costa Campos4

Abstract: In any agricultural insurance program, the accurate quantification of 
the probability of the loss has great importance. In order to estimate this quantity, 
it is necessary to assume some parametric probability distribution. The objective 
of this work is to estimate the probability of loss using the theory of the extreme 
values modeling the left tail of the distribution. After that, the estimated values 
will be compared to the values estimated under the normality assumption. Finally, 
we discuss the implications of assuming a symmetrical distribution instead of a 
more flexible family of distributions when estimating the probability of loss and 
pricing the insurance contracts. Results show that, for the selected regions, the 
probability distributions present a relative degree of skewness. As a consequence, 
the probability of loss is quite different from those estimated supposing the 
Normal distribution, commonly used by Brazilian insurers.
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Resumo: Em todo programa de seguro agrícola, a quantificação da probabilidade da perda 
da produtividade agrícola é de grande importância. A fim de estimar esta quantidade, é 
necessário supor alguma distribuição de probabilidade paramétrica. O objetivo deste trabalho 
é estimar a probabilidade da perda usando a teoria dos valores extremos para modelar a cauda 
esquerda da distribuição. Os valores estimados foram comparados aos valores estimados sob a 
suposição da normalidade. Por fim, são discutidas as implicações de se supor uma distribuição 
simétrica em vez de uma família mais flexível de distribuições para estimar a probabilidade 
da perda e fixar a taxa de prêmio dos contratos de seguro. Os resultados mostraram que, 
diferente dos procedimentos adotados no mercado segurador, que supõem normalidade, as 
distribuições de probabilidade apresentam um relativo grau de assimetria que modifica o 
valor das probabilidades de perda e, consequentemente, as taxas de prêmio.
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1. Introduction

Historically, Brazilian agricultural insurance 
market faces some well recognized problems. 
More specifically, insurance high costs, systemic 
nature of risk, adverse selection, lack of accurate 
farm-level information, and moral risk can be 
pointed out as the main drawbacks.

Recently, the Federal Government has 
implemented some initiatives to develop crop 
insurance in Brazil. For instance, by the Federal 
Law 10,823 part of the total insurance costs will 
be subsidized. Now, the following step relies on 
providing information to drive rules by which the 
insurance companies will offer their products. It 
implies in getting around the problem concerning 
the lack and inaccurateness of the information 
exhibited in some areas.

Remarkably, the insurance market is based 
on individual information which is important to 
show the risk profile of each one. In the absence 
of reliable and accurate information insurers will 
avoid offer their contracts. In the agricultural 
sector farm-level yield data is almost inexistent. 
Some cooperatives have gathered yield 
information from their associated producers, 
but it is still far from being enough to support 
the spatial density of information which is 
demanded by the crop insurance. Municipality-
level yield has been recorded and released by 

Brazilian Institute for Geography and Statistics 
(IBGE) and used as an alternative. However, such 
aggregation is not desirable for local (farming 
fields) risk analysis (OZAKI, 2008).

According to the IBGE the Parana State is 
the major grain producer in Brazil. In 2011, the 
IBGE estimated a high production of soybean 
(13.4 millions of tons). This amount is 41% larger, 
when compared to the total reached in the 
previous harvest year. However, less than 10% 
of the planted area is covered by crop insurance. 
In this context, the analyses of the probability of 
loss can support insurance companies to deal 
with seasonal fluctuation of grain production. 
Traditionally, the Normal distribution assumption 
is commonly used by the insurers to quantify 
and price the risk. Nevertheless, by assuming the 
Normal distribution it is not possible to take into 
account the skewness and bimodalities present 
in the probability distributions of the agricultural 
yields (GOODWIN and KER, 1998).

Moreover, the shape of the distribution is 
particularly important in the context of crop 
insurance studies, because it reflects the risk 
(probability of loss) of the producer. When 
modeling agricultural yields one must look at 
the density concentrated at the left tail of the 
distribution. When yields events are assumed as 
normally distributed the probability of loss will 
be underestimated if the true distribution exhibits 
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heavier tails as in extreme values distributions 
(OZAKI et al., 2008).

In the literature, Just and Weninger (1999) 
suggest the normality assumption, whilst others 
point out evidences against it (DAY, 1965; TAYLOR, 
1990; RAMIREZ et al., 2003). Alternatively, Beta 
distribution (NELSON and PRECKEL, 1989; 
TIRUPATTUR, HAUSER and CHAHERLI, 1996; 
BABCOCK, HART and HAYES, 2004; and COBLE et 
al., 1997), Inverse Hyperbolic Sine Transformations 
(MOSS and SHONKWILER, 1993; RAMIREZ, 
1997), Log-Normal (GOODWIN, ROBERTS and 
COBLE, 2000), Skew Normal distributions (OZAKI 
and SILVA, 2009) and Gamma (GALLAGHER, 
1987) have been proposed.

This study applies the extreme value theory 
to model the left tail of the agricultural yield 
probability distribution of the mesoregions5 in 
Parana state. Finally, the estimates are compared 
to those supposing the Normal distribution that 
is commonly used by insurance companies.

The paper is organized as follows: in Section 2 
we briefly review some aspects of crop insurance. 
In Section 3 we show the extreme value theory 
and in Section 4 we describe the Brazilian yield 
data for soybean. In Section 5 we present our 
empirical findings and discuss their implications, 
and in Section 6 we conclude the paper.

2. Crop insurance

Basically, the compensation mechanism is 
triggered by the farm-level yield. Producers are 
indemnified when the agricultural yield observed 
in the end of the harvest (in the unit or farm) falls 
below the yield guaranteed in the contract. This 
type of agricultural insurance is called individual 
yield crop insurance. The indemnity I for each 
farm i can be expressed as follows:

,maxI x x 0i i i
c

iφ= −^ h6 @

5. Groups of municipalities within a State with common cha-
racteristics.

In which:
φi is the deductibility, 0 < φi < 1;
xi

c  is the critical yield;
xi is the observed (final) yield;
The critical yield is defined according to the 

equation: xc = αiμi. In which: αi is the level of 
coverage chosen by the agricultural producer, 0 
< αi < 1; and, μi is the farmer expected yield. In 
what follows, Ii represents the indemnity due to 
each producer when the agricultural yield xi falls 
below the guaranteed yield xi

c .

3. Methodology

Extreme value theory (EVT) is widely applied 
in financial, economical and insurance areas. 
One of the main challenges to the risk manager 
is to implement risk management models 
which allow for rare and damaging events with 
perverse consequences (KOEDIJK et al., 1990; 
LORETAN and PHILLIPS, 1994; LONGIN, 1996; 
EMBRECHTS et al., 1997; DANIELSSON and DE 
VRIES, 2000; NEFTCI, 2000; MCNEIL and FREY, 
2000; GENCAY et al., 2003; DIEBOLD et al., 1998).

The regulator agents of insurance companies 
expect the companies be able to honor their 
contracts even under crises scenarios. Thus, it is 
mandatory to keep a reasonable fund to avoid 
insolvency in case of catastrophic events.

EVT has become one of the main theories 
in developing statistical models for extreme 
insurance losses. This approach is focused on a 
special class of probability distributions called 
Generalized Extreme Value distribution (GEV) 
which encompass distributions like Gumbel, 
Fréchet and Weibull. PGD (Pareto Generalized 
Distribution) distribution such as Exponential, 
Pareto and Beta are also used in the EVT approach 
as well. In the standard format GEV and PGD 
depend only on the parameter which is called tail 
index.

There are two main approaches to deal with 
extreme random variables: POT (Picks Over 
Threshold) approach concerns on fitting the 
probability distribution (usually a PGD) by taking 
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values over some threshold; and, the Block 
Maxima (or Gumbel method) approach addresses 
the set of maximum values coming from a block 
of observations. In order to assess the market risk, 
for instance, the Block Maxima is used to estimate 
the return probability of maximum (minimum) 
event for a given time interval (e.g., months, 
years) (DE HAAN and PEREIRA, 2006).

3.1. Extreme value theory

Suppose that the sequence X1, X2, ... Xn is 
independent and identically distributed (i.i.d.) 
with distribution function F(X) and let ϒn = 
max(X1, X2, ... Xn) with distribution function:

Pr{ϒn ≤ x} = Pr{X1 ≤ x, ..., Xn ≤ x} = (F(x))n

Then ϒn has the distribution function

. ..

. ..

lim limPR a x b PR a
b

x Hx
n

n n n
n n

n n

# #+ =
−

=
" "3 3

^
^

h
h= G  (1.1)

In which an > 0 and bn are normalized 
constants.

If (1.1) holds, we say F (or X) belongs to the 
(maximum) domain of attraction (MDA) of H 
and write F ∈ MDA(H) (or X ∈ MDA(H)). Note 
that H has one of the following three parametric 
forms (which are generally called Extreme Value 
Distributions - EVD):
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In II and III α is any positive number. The 
three types are also often called the Gumbel, 
Fréchet and Weibull distributions, respectively.

3.1.1. Fisher-Tippett Theorem

Let ϒn = max(X1, X2, ..., Xn) be a sequence of 
independent and identically-distributed random 
variables. For some an > 0 let:

ϒ
ϒ

.Pr a b x H xn n n
1

"#−- ^ ^h h" ,  (1.3)

for some non-degenerate H then it belongs to the 
three types described in 1.2.

Based on the Fisher-Tippett theorem is possible 
to estimate the asymptotic distribution of 

.

a
b

n

n n−^ h
 directly from the family H without the 

distribution of X. The three types of extreme value 
distributions can be written into a generalized 
extreme value (GEV) distribution form given by

; , , expH x
x

1
/1

µ σ ξ σ
ξ µ

= − +
− p-

^
^

h
h= G) 3

in which µ, σ and ξ are the parameters of location, 
scale and shape, respectively. Moreover, 1 + 
ξ(x – µ)/σ > 0, σ > 0. The case where ξ = 0 is 
interpreted as the limit case ξ → 0, that is

; , , exp expH x
x

0µ σ σ
µ

= − −
−

^
^

h
h= G) 3

Type II and III correspond to 0
1

2ξ ξ α
=c m 

and 0
1

1ξ ξ α
=−c m respectively6.

The Fisher-Tippett theorem gives a limit 
distribution for the maximum collected in a block 
of size n. Let x1,x2,...,xk be observations of the 
random variable X. The sample data is partitioned 
into n blocks such that nk ≤ m, and let

ϒ1 = max{x1,...,xk}
ϒ2 = max{xk-1,...,x2k}
...
ϒn = max{xnk-k+1,...,xnk}

The estimators of µ^, σ^ and ξ^ are estimated 
using this new sample, ϒ1,ϒ2,...,ϒn.

From the GEV we can get the probability 
density function of the GEV distribution given 
by:

; , , expf x
x x1

1 1X

1 1

µ σ ξ σ ξ σ
µ

ξ σ
µ

= +
−

− +
−

p

p

p
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h m m
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6. Smith (1990) detailed the statistical treatments, applica-
tions and estimations of the GEV.

ϒ

ϒ
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in which -∞ < x < (µ - σ)/ξ for ξ < 0, and (µ - σ)/ξ 
< x < +∞ for ξ > 0 in which x is a random variable 
associated to the maximum values. Suppose now 
that Xi, i = 1, 2, … is a sequence of i.i.d. random 
variables with a continuous marginal distribution 
function F(x), and Xi

t , i = 1, 2, … is the so-called 
associated sequence of i.i.d. random variables with 
the same marginal distribution function F. note 
that ϒn stands for the maximum as usual, defined 
by (1.1), while ϒ^n denotes the corresponding 
maximum of , ...,X X1 n

t t" ,. The limiting distribution 
of ϒn can be related to the limiting distribution of 
ϒ^n via a quantity called the extremal index of the 
sequence {Xn} (CARTWRIGHT, 1958; NEWELL, 
1964; O’BRIEN, 1974).

3.2. Selection of the extreme value distribution

The statistics of likelihood ratio (TLR) is 
defined by

T l l l l2 2LR G GEV GEV Gθ θ θ θ=− − = −t t t t^ ^ ^ ^h h h h6 6@ @ (1.4)

In which l GEVθt^ h and l Gθt^ h are the maximum 
of the logarithm of the maximum likelihood 
function of GEV and the Gumbel distribution in 
which GEVθt =(µ^,σ^,ξ^) and Gθ =t (µ^,σ^) are vectors of the 
estimated parameters µ, σ and ξ with asymptotic 
distribution 2χ  with one degree of freedom. 
Hosking et al. (1985) suggest the use of a modified 
test statistics to improve the approximation of the 
asymptotic distribution of (1.4) given by

.
T n T1

2 8*
LR LR#= −c m

In which n is the length of the sample.
To test the null hypothesis H0 : ξ = 0 versus 

H1 : ξ ≠ 0, one must compare the test statistics T *
LR  

with the tabulated value of 2χ  distribution with 
one degree of freedom and ϑ  significance level. 
If T *

,
2

LR 1$ χ j6 @ , H0 is rejected. In other words, there 
is strong evidence that the distribution is not the 
type I (Gumbel).

3.3. Diagnostic of the extreme  
value distribution

In order to test the assumption that the data 
follow a GEV distribution, it is possible to use the 
Kolmogorov-Smirnov test (SANSIGOLO, 2008; 
BAUTISTA et al., 2004). The D statistic of the 
Kolmogorov-Smirnov tests is defined by

| |, , , ...,maxD F x F x i n1 2i i= − =t^ ^^ ^h hh h

in which F(x(i)) is the theoretical distribution of 
GEV and F x i

t^ ^ hh  is the empirical distribution. 
The test procedure consists in sorting the data 
in ascending order. The distribution function 
assumed for the data is defined by F(x(i)) and the 
empirical distribution function of X is described 
as follows:

, , , ...,F x
n
i

i n
1

1 2i =
+

=t^ ^ hh

The hypothesis that the data follow the 
GEV distribution (H0) will be rejected if the test 
statistics D D ,n$ j6 @ , where D ,n j6 @  is the critical value. 
One should also use the graphical interface via 
the qq-plot (quantile-quantile chart).

In order to determine the probability 
distribution assuming a Normal distribution we 
used the maximum likelihood method to estimate 
the two first moments of the distribution. I what 
follows we fitted the Normal distribution and it 
was compared to the GEV distribution.

The next step is to calculate the probability 
of loss by integrating the area below the curve 
less than a predetermined level (a percentage of 
the average yield). In the crop insurance market, 
this percentage – often called level of coverage – 
range between 60 up to 80% of the average yield 
for each mesoregion. In this study we consider 
only three levels, 60, 70 and 80%.

The shape of the distribution is of great 
importance when calculating the probability 
of loss. Considering the situation where the 
true distribution is symmetric and one fits an 
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Figure 1. Mesoregions in Paraná State

Source: Results of the study.

asymmetrical distribution to the data. In this 
context if the asymmetry is negative, then the 
probability of loss will be underestimated in 
relation to the true distribution. The opposite is 
also true.

4. Data description

The municipality-level soybean yield data 
were acquired from the Secretary of Agriculture 
of the State of Parana (Seab), from 1981 to 2007, 
in kg/hectare. The municipality-level yield is an 
average for crop yield in the municipality and is 
based on the subjective methodology created by 
the Geography and Statistics Brazilian Institute 
(IBGE). These statistics are based on a consensus 
among agricultural players in a municipality 
(farmers, bank managers, crop extensionists, etc). 
Thus, the IBGE releases the average yield for each 
municipality. Given a mesoregion, we select the 
minimum value of the soybean yield in a group 
of municipalities within the mesoregion. In other 
words, if there are ten mesoregions, we have ten 
observations in each year. This data are collected 
and released annually (two year lag).

Thus, the empirical application considers 
mesoregions (a set of municipalities) defined by 
the Brazilian Institute of Geography and Statistics 
(IBGE) (Figure 1). Considering the fact that in each 
mesoregion there exist a set of municipalities then 
the minimum value of this set of municipalities in 
a year is used to create the time series of minimum 
values for each mesoregion. We utilized this 
procedure for each year since 1980. Figure 2 shows 
the evolution of the average of the minimum 
values, from 1981 to 2007.

5. Results and discussion

Table 1 and Figure 3 show, respectively, 
descriptive statistics and the boxplot of the 
soybean yield for all mesoregions. The descriptive 
statistics show that the median is systematically 
higher than average or smaller, which suggests 
that the distributions are asymmetric to the left 
or to the right, respectively.

The coefficients of asymmetry and kurtosis 
can be used in the exploratory analysis to 
recognize the shape (skewness, kurtosis) of the 
distribution, or even to recognize mixtures of 
distributions.
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Figure 2. Boxplot of the yields for each mesoregion
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Source: Results of the study.

Table 1. Soybean yield descriptive statistics

Mesoregion Number of 
Counties Mean Median Standard  

Deviation Skewness Excess  
Kurtosis CV

M1 61 1302.5 1427 471.0 -0.487 -0.321 36,2

M2 25 1931.3 1941 626.3 0.146 0.051 32,4

M3 79 1639.9 1476 560.4 0.501 0.038 34,2

M4 46 1712.6 1712 373.4 -0.209 0.117 21,8

M5 14 2022.7 2000 974.2 0.827 0.019 48,2

M6 50 2006.7 1983 719.9 0.898 0.043 35,9

M7 37 2096.7 1907 752.8 1.279 1.741 35,9

M8 29 1769.1 1740 706.9 0.517 -0.794 40,0

M9 21 1968.8 1983 868.1 0.465 -1.003 44,1

M10 37 1383.7 1495 284.3 0.051 -1.501 20,5

Source: Results of the study.
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Figure 3. Density estimation
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Table 2. Estimates of the location, scale and shape parameters

Mesoregion location scale Shape (tail index)
M1 1184.327 498.578 -0.4793
M2 1671.326 604.537 -0.2243
M3 1416.531 498.270 -0.1446
M4 1544.749 385.109 -0.3140
M5 1593.662 765.571 -0.0241
M6 1678.665 541.199 0.0262
M7 1770.485 548.770 0.0182
M8 1425.315 536.631 0.0588
M9 1569.713 687.459 -0.0011
M10 1307.421 293.905 -0.4446

Source: Results of the study.

Table 3. Intervals of 95% confidence for the shape parameter (ξ) and values of the  
Modified Likelihood Ratio Test (T*

LR)

Mesoregion
Limits of 95% confidence intervals for ξ

(T*
LR) Distribution

Lower Upper
M1 -0.721 -0.211 10.240 Weibull
M2 -0.421  0.003  3.783 Gumbel
M3 -0.382  0.093  1.353 Gumbel
M4 -0.545 -0.123  5.975 Weibull
M5 -0.288  0.248  0.032 Gumbel
M6 -0.294  0.346  0.030 Gumbel
M7 -0.207  0.243  0.026 Gumbel
M8 -0.496  0.554  0.082 Gumbel
M9 -0.571  0.471  0.001 Gumbel
M10 -0.961  0.073  0.030 Gumbel

Source: Results of the study.

Table 2 shows the point estimates of the 

shape parameter 
1

ξ α
= . Results show that the 

shape parameters were negative for 7 regions and 
positive for 3 regions suggesting that the extreme 
distributions are either Weibull or Gumbel.

Comparing the value of the statistics T *
LR^ h 

presented in Table 3 with the 2χ  statistics with one 
degree of freedom and 5% level of significance 

.3 84; .1 0 05
2χ =^ h, one can note that the distribution 

to be fitted is the Gumbel distribution in the 
mesoregions 2, 3, 5, 6, 7, 8, 9 and 10. On the 
other side the mesoregions 1 and 4 will be 
modeled using the Weibull distribution. This fact 

is confirmed by the D statistics (Kolmogorov-
Smirnov test) presented in Table 3. According to 
the test most of the mesoregions could be fitted 
by the Gumbel distribution.

It is important to note that the Normal 
distribution could also be used as an alternative 
probability distribution according to the Shapiro-
Wilk normality test. In Table 4 one can note that 
in mesoregions 2, 3 and 4 the Normal distribution 
could not be rejected at the level of 10%. On the 
other hand, Atwood et al. (2003) raise critical 
issues on the use of the Normal distribution 
when modeling crop yields.
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Table 4. Shapiro-Wilk normality test

Mesoregion statistic W p-value
M1 0.9653 0.0483
M2 0.9751 0.7390
M3 0.9662 0.5044
M4 0.9775 0.8012
M5 0.9385 0.0121
M6 0.9159 0.0314
M7 0.8904 0.0081
M8 0.9334 0.0837
M9 0.9205 0.0404
M10 0.9092 0.0218

Source: Results of the study.

Table 5. Kolmogorov-Smirnov test – diagnostic of the fitted distribution (Gumbel)

Mesoregion statistic D p-value
M1 0.2696 0.0194
M2 0.1446 0.5752
M3 0.1257 0.7405
M4 0.2262 0.0380
M5 0.1073 0.9150
M6 0.1092 0.8698
M7 0.1123 0.8484
M8 0.1335 0.7218
M9 0.1185 0.8426
M10 0.1166 0.1586

Source: Results of the study.

Figure 4 shows the distributions adjusted 
for each mesoregion. Most of the distributions 
are asymmetric to the right. In this context, 
the probability of loss is supposed to be higher 
compared to the Normal distribution case, 
commonly used by the insurance companies. 
The Figure 5 shows the diagnostics of the fitted 
distribution through the qq-plot. Considering the 
level of significance of 1%, Table 4 shows that the 

data follow the GEV distribution. In other words, 
the null hypothesis cannot be rejected.

Once the distribution of interest is chosen, 
the next step is to determine the probability of 
loss for each mesoregion and compare the results 
assuming the Normal distribution. Tables 5 and 
6 show the probabilities of loss of the selected 
municipalities using both distributions (Weibull-
Gumbel and Normal).
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Figure 4. Kolgomorov-Sminorv test of the empirical cumulative distribution (dotted line) and  
theoretical distribution (continuous line)
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Figure 5. QQ-plot –Gumbel distribution
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Table 6. Probability of loss assuming the Weibull and Gumbel distributions – levels of coverage of 60, 70 and 80%

Mesoregion
Level of coverage (ϑ)

60% 70% 80%
M1 13.8 19.7 27.1
M2 11.4 19.3 29.3
M3 10.4 18.6 29.2
M4 4.7 11.0 21.7
M5 19.4 28.3 38.0
M6 8.8 18.9 31.8
M7 7.7 17.5 30.6
M8 13.6 24.1 36.1
M9 17.2 26.7 37.1
M10 3.4 7.9 16.3

Source: Results of the study.

Table 7. Probability of loss assuming the Normal distribution - levels of coverage of 60, 70, and 80%

Mesoregion
Level of coverage (ϑ)

60% 70% 80%
M1 21.0 29.2 38.8
M2 19.8 29.9 41.7
M3 19.3 29.9 41.7
M4 9.0 18.5 32.5
M5 31.0 40.8 51.3
M6 19.0 30.6 44.6
M7 17.5 29.1 43.3
M8 24.9 36.4 49.3
M9 28.6 39.0 50.3
M10 5.2 12.5 24.8

Source: Results of the study.

One must note that the level of coverage 
is a parameter chosen by the insured at the 
beginning of the insurance contract. In this 
context, the agricultural producer can choose the 
levels from 60 to 80% of the average yield of the 
municipality i (μi) resulting in the critical yield. If 
the final yield - in the end of the harvest, yi, is 
lesser than the critical, the insured receives the 
indemnity. In this study, because of the fact that 
we aggregate the information into mesoregions, 
the critical yield is related to each mesoregion 
instead of municipalities. Thus, the premium rate 
is calculated for each mesoregion.

In Tables 5 and 6 one can notice that for all 
levels of coverage, the probability of loss estimated 
using the Normal distribution is greater than the 
estimated probability using the Weibull-Gumbel 

distributions. A direct implication of this fact is 
the overpricing of the premium rate, given by 
(Goodwin and Ker, 1998):

|
Premium Rate

F E Y y <Y Y

αµ
αµ αµ αµ

=
−^ ^h h6 @

in which E is the expectation operator and F is the 
distribution function.

The probability of loss is represented by 
the distribution function in the premium rate 
formulae. In the calculation of the rate, the 
operator of expectation and the term in the 
denominator are constant.

In what follows, we present a hypothetical 
example to illustrate this fact. Consider a soybean 
producer in Mesoregion 1. The premium rate 
calculated for the level of 80% is equal 2% and 
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3,18%, respectively, considering the distributions 
Weibull and Normal.

In the insurance market this difference 
represents a large variation in the total premium. 
Considering for example, that a insurance 
company sells to a soybean producer a insurance 
contract in the Mesoregion 1 charging 3,18% 
(Normal rate) instead of 2% (Weibull rate). 
Suppose, for instance, the average liability is equal 
to US$ 1 mi in a pool (20 thousand producers). 
The average premium charged is approximately 
US$ 31,800 instead of US$ 20,000. The soybean 
producers will be overcharged on average in US$ 
11,800 and US$ 236 mi, in total.

6. Conclusion

In this research we analysed alternative 
statistical assumptions for estimating the 
probability of loss with SEAB’s agricultural 
yield data and analyse its consequences in the 
premium rate. The soybean data were adjusted 
considering the Weibull-Gumbel and Normal 
distributions for all mesoregions in Paraná state.

Moreover, the probability of loss in Table 5 
is quite different from the results in Table 6. The 
normality assumption is commonly used by most 
of the crop insurance companies in Brazil because 
of its mathematical tractability. Looking more 
carefully at the results, for all levels of coverage, 
the probabilities of loss are higher in the Normal 
case. On average, 77, 54 and 41% for the 60, 70 
and 80% level of coverage, respectively.

It means that insurance companies are 
ignoring the skewness of the distribution and 
overpricing the risk. The pure premium rate is 
actually smaller than the premium rate charged. 
The consequence for the insurance market is 
that high risk producers may find attractable to 
demand the insurance increasing the probability 
to receive the indemnity. This classical problem, 
known as adverse selection, is well documented 
in the economical and actuarial literature and it 
could cause severe problems of financial losses in 
the agricultural insurance market.

From the insurance company point of view, 
supposing a Normal distribution, the probability 
of loss is greater than the rate estimated using 
the Weibull-Gumbel distributions. It means that 
if the true distribution is non-symmetric then 
the Normal case will overestimate the true rate. 
When the crop insurance is not compulsory, 
higher rates implies that the insurance company 
will adversely select only the farmers with higher 
risks. Otherwise, when the crop insurance is 
compulsory, the insurance company increases 
their revenue by charging a higher premium 
rate dissatisfying the farmer. However, in this 
situation, by spreading out the crop insurance 
in several regions the risk is better managed 
by the insurance company. On the other hand 
if the true distribution is symmetric than the 
Normal distribution could be used to estimate 
the premium rate. In this case, estimating the 
rates by the Weibull-Gumbel distributions 
will underestimate the rates. Farmers will be 
undercharged and the insurance companies will 
lose revenue.

In a market where historically most of the 
producers avoid demanding insurance products 
because of its high premium rate, and high 
probability to have indemnities paid higher than 
premiums collected by insurers, better statistical 
assumptions should be taking into account 
to better reflect the agricultural risk and the 
calculation of the premium rate.
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